Product of 2-by-2 matrices and

cutpoints of random walks

Hua-Ming WANG(Anhui Normal University)
(A joint work with Lanlan Tang)

17th Workshop on Markov Processes and Related Topics
Beijing Normal University

Nov. 25-27, 2022



Contents

@ Products of Nonnegative 2-by-2 Matrices

© Cut-point Problem of Random Walks



Part I:

Products of Nonnegative
2-by-2 Matrices



Product of 2x2 Matrices

ar by
dj, 0y
Consider the products Myi1 -+ Mpin.

Let My, := ( > ,k > 1 be nonnegative matrices.

In ergodic theory of product of nonnegative matrices, it is shown

Mis1-Myne; .
that W —¢,j =1,2,n — oo, see Seneta (1981).
Further Question: e;M; - My ,e; ~7

Motivations:
o the escape prob. of (1,2) and (2,1) random walks are func-
tions of ;M1 - - - Mjynej;

o The asymptotics of 2-type branching processes rely on the
limit behaviours of e; My, - - - My, e;.

[§ Seneta E. Non-negative matrices and Markov chain. 2nd Ed.
Newyork: Springer Science & Business Media, LLC; 1981.



Some continued fractions related to My, k> 1
For n > 1, let

bp+1 anbpi1 + bn9n+1
Bn = aan =
bn(anrldnJrl - an+19n+1) bn(bn+1dn+1 - an+19n+1)
and set
6 o & ﬁn—l—l ﬁn+2
T ap Tt angr Fangia o
Let M := ( Z Z) be a nonnegative matrix and let
a+ 0+ +/(a+0)2+ 4(bd — ad)
= 5 ,
. a+0—+/(a+0)%+4(bd — ab)
1=
2

be the eigenvalues of M.



Theorem 1

Suppose that limg oo M = M, a+ 6 # 0, b # 0 and bd # af.
Then Jko > 0 such that for & > ko and 7,5 € {1,2}, we have

€M1 Mgine

— (i, 4, k)
1 1 9] W)y

k1 Shn
uniformly in k& as n — oo; furthermore, if we assume further

0 > 1, then for £ > ko and i = 1, j € {1,2}, with the above
¥(1, 4, k), we have

1
S e My My n€
n+1l —1 -1
Zszl £k+s U £k+n

uniformly in k as n — oo,

% /l/)(/l/’,]? k)?

V.

[§ Wang, H.-M.: Asymptotics of entries of products of nonneg-
atives 2-by-2 matrices, arXiv: 2111.10232 (2022)



where

o—0 b
1/}( )y ) o— 01717/}( ) <y ) 0— o1
1/}(2 1 k) _ Y <09]€+1 _5 det(Mk+1)>

k+1
0— 01 \ bry1 br41

¥(2,2,k) = b <9k+1_§ det(MHl))

k+1
0— 01 \ bry1 br41

& According to the above theorem, entries of the product of

matrices can be evaluated by the product of continued frac-
tions, which are some numbers.

O If o(M,) is the spectral radius of M,,, it is easy to show that

o(My) ~ &pyn — 0.




Lyapunov Exponent of product of 2-by-2 i.i.d. random
matrices

Proposition

Suppose M,,n > 1 are i.i.d.(or ergodic), P(det(M;) > 0) = 1
and Elog™ (max{a1, b1,d1,61}) < co. Then for i,j € {1,2},

1
lim —loge;M; --- Mye; = E(logé, ), P-as..

n—o0 M,

The proposition is proved based on the following observations:

§;i"'§;}z:elAk"'Aneﬁv

§k"'€nSgk,n"‘fn,nSgk"'fn—lgn,nal <k<n.



Part 11I:

Cut-point Problem of Ran-
dom Walks



Nearest-Neighbor Random Walk
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Occupation time of the site 3 is 1, it ‘cuts’ the path of the RW
into two disjoint parts, the ‘future’ and the ‘past’, so the site 3
is a cutpoint.

NN w B~ o1 o

QO Intuitively, the faster the walk runs, the more cutpoints
it has.

O Is it possible that the walk is transient, but not fast enough,
so that there are only finitely many cutpoints?



Suppose that {X,,} is a random walk on Z; with trans. prob.
P(Xn+1 =i+ HXn = Z) =p; € (0, 1),
PXpy1=i—-1X,=i)=¢=1—p;,n>0,i>1,
P(Xps1 = 1|X, =0)=1,n > 0.

¢ For the above model, James, Lyons, Peres (2008) give a ex-
ample which shows that the walk is transient but has only
finitely many cutpoints.

¢ Csdki, Foldes, Révész (2010) give a criterion for the finite-
ness of the number of cutpoints.

@ Csaki, E., Foldes, A., Révész, P.: On the number of cutpoints of tran-
sient nearest neighbor random walk on the line. J. Theor. Probab. 23,
624-638 (2010)

@ James, N., Lyons, R., Peres, Y.: A transient Markov chain with finitely
many cutpoints. In: IMS Collections Probability and Statistics: Essays
in Honor of David A. Freedman, 2, 24-29, Institute of Mathematical
Statistics (2008)



Set p; = 1t,i>1,and D(n) =1+ 3272, ppt1 - pntjsn = 0.
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Theorem(Cséki, Foldes, Révész)
Suppose 0 < p; < 1/2,i > 1.

o if

Mg

D(n logn < 00

n=1

then almost surely, {X,,} has at most finitely many cut-
points;
e If 30 > 0 such that D(n) < dnlogn for n large enough and

1
D(n)logn

WE

S
Il
N

then almost surely, {X,,} has infinitely many cutpoints.
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Py(a,b,—) = P(X hits a before it hits b| Xy = k).

for 0 <a <k <b, we have

b—1
i PR
1+ Z] —aq+1 Pa+1 """ Pj

Pk(a7 b7 _)

¢ The proof of the above theorem is based on some delicate
analysis of the escape probabilities. The formulae of such
escape probabilities are very simple and the value of p; is
known in advance.



We aim to discuss the asymptotics of the number cutpoints of
some non-nearest neighbour random walk. Now, we can deal
with such problem for (1,2) and (2,1) random walks.

¢ (2,1) random walk X = {X}i>0:

i)

(Xpsr = 1Xp = 0) = P(Xpp1 = 21Xz = 1) = 1,
(Xkp1 =n+1Xg =n) = qgn,
(
(

T v

)
Xit1 =n—1Xp =n) = pn1,
)

PXk+1:n—2|Xk:n :png,n22,k20.

an

0 n—2 n—1 n n+1



¢ (1,2) random walk Y = {Y;}i>0:

P
P

i)

(
( )

(Yey1 = n+ 1Y, =n) = pp1,
(Yer1 =n+2|Yp=n) =ppa,n>2,k > 0.

i)

dn
Pn2

0 n—1 n n+1 n+ 2



Cutpoints of (1,2) and (2,1) Random Walks

¢ For (2,1) random walk X, if #{n >0: X,, = k} = 1, we say
k is a cutpoint of X;

¢ for (1,2) random walk Y, if #{n > 0: X,, = k} =0, we say
k is a cutpoint(or Skipped Point) of Y. .
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(2,1) random walk (1,2) random walk
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Escape Probabilities

¢ To study the cutpoint of (1,2) and (2,1) random walks, the d-
ifficulty is that the escape probabilities are functions of prod-
ucts of 2-by-2 matrices, whose entries are hard to evaluate.
We have treated these evaluations in the first part.

Consider (1,2) random walk Y. For 2 < m < k <n+ 1 and
j € {n,n+1}, set

Qi(m,n) = P(Y hits [n,00) at j before it hits [0,m]|Yy = k),

and set
Qr(m,n,+) == Q¢ (m,n) + Q¥ (m,n).

3v
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Let Ay := (Cblk lgc

It is easy to compute the spectral radius(top eigenvalue) of Ay,

ap+/ ai+4bk

) where aj, := PELEPE2 by — Di2
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Lemma

Consider (1,2) random walk Y. For 1 < m < k < n, we have

i 0
1+ e1As---An_1e

Qr(m,n) = E e Ay Ay < s= m+1 1 n—1 fdi—e;),
s=m-+1 1+ Es m+1 elAs 900 An—lel

k n—1 A A t
4el Z ¢ > +1 €1 An-1€
Z (m7 TL) = elAs ot A'nfl (eQ — €] )

t
s=m+1 1+2 = m+1 e1ds - An—1e€]

k t
Es m+1 elA An_lel
1"‘25 ALl erd; - An_1ef

Qk (ma n, +)




Escape probabilities for (2,1) random walk X

ForO<m —1<k<n,set

Py(m,n,—) = P(X hits [0,m] before it hits [n, c0)| Xo = k).

Consider (2,1) random walk X. For 1 < m < k < n, we have

n—1 t
. Zs:k elAs coo Am+1e1
_ n—1 :
1+ E s=m+1 e1Ag--- Am+1e'i

Pk(mv n, _)




We now introduce the follow condition:

(C) Assume aj, — a >0, by, — b > 0.

¢ Under condition (C), Ay — A = <(f 8)

The eigenvalues of A are

Q:1<CL—|— a2—|—4b>,(r:1<a—\/a2—|—4b).

2 2

It is easy to see that —1 < o < 0 and |o| < .
¢ Under Condition (C),
ifa+0=1,then op — 0=1,pr1 + 2pr2 — qx — 0.

In this case, we say the random walk is near recurrent or
near critical.



Asymptotics of hitting probabilities and es-
cape probabilities

Consider (1,2) random walk Y. For k > 0, write L, = {2k, 2k + 1}.
For k > 1, set

Ty =inf{n >0:Y, € L},
hi(1) = P(Yy, = 2k),
hi(2) = P(Yp, =2k + 1),k > 1;
Mem(1) = P(Y hits [m +1,00) at m + 1Yy = k),
(

Mem(2) = P(Y hits [m+1,00) at m +2|Yy =k),m > k > 1.



Proposition
Suppose that (C) holds. Then

g

9

m 7, ,(2) = —0, lim h,(2) = —
n—oo

n—o00 1—0

For k> 1, set a :=a+%. Then as n — oo, we have

k+n
Qk+1(k,k+n) L

Qi (ke ke +n)

I

ktn+1 o, if o > 1,
Qpin1 (ks k1) = 7= { ﬁﬁ;#b—@, if o <1,

where the convergence is uniform in k£ > 1.
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I had considered a special (1,2) random walk, whose negative
jumps are always with size 1 and positive jumps are always
with size 2. I gave a criterion for the finiteness of cutpoints of
this special model. But unfortunately, I could not get an almost-
sure result for the case there are infinitely many skipped points,
because I could not prove the above proposition at that period.
See the paper below.
[§ Wang, H.-M.: On the number of points skipped by a tran-
sient (1,2) random walk on the lattice of the positive half

line. Markov Processes Relat. Fields. 25,125-148 (2019)

Next we give criteria for the finiteness of cutpoints of

(1,2) and (2,1) random walks.



Recall that

Ay = (ak bk) where a, := Pr1 T Pr2 +pk2,bk = Dk2
10 i ak

ak+\/a%—|—4bk

2
is the spectral radius of Aj. Define

Dx(n)=1+ Z H 0i, Dy(n)=1+ Z H 0t

j=n+1li=n+1 j=n+1li=n+1

)

Ok =

X is a (2,1) RW. For X, a point with occupation time 1 is called
a cutpoint.

Y is a (1,2) RW. For Y, a point with occupation time 0 is called
a cutpoint(or skipped point).



Criteria for the finiteness of the number of cutpoints

Theorem 2

Consider random walk Z € {X,Y}. Suppose that Condition (C)
holds, a+b = 1 and 9Ny > 0 such that g is increasing in k > Ny
when Z = X, and decreasing in £ > Ny when Z =Y.

& If

0

1
=<
Z Dy(n)logn -

n=2
then almost surely, Z has at most finitely many cutpoints.
{ 1If there exists some ¢ > 0 such that Dz(n) < dnlogn for n
large enough and

o0

1
222 Dz(n)logn o

n=

then almost surely, Z has infinitely many cutpoints.




Fix f > 0 and set

1(1 1 :
Ty = 3 (ﬁ + n(loglogn)5> , ifn >4,
T4, ifn=2,3.

Corollary
Assume that Condition (C) holds.

(i) If o = 1 — 3rg + O(r?), then almost surely ,
£ > 1= X has at most finitely many cutpoints;
£ < 1= X has infinitely many cutpoints.

(ii) If o = 1+ 3ry + O(r?), then almost surely,
B > 1= Y has at most finitely many cutpoints;

£ <1 =Y has infinitely many cutpoints.




Proof. If o), = 14 3rp + O(r,%) as k — oo, then 3Ny > 0 such
that gy is decreasing(increasing) in k& > Ny. Furthermore, with
0 < ¢1 < ¢y < 0o some proper constants, if o = 1 — 31 + O(r3)
as k — oo, it can be shown that for n large enough we have

cin(loglogn)® < Dx(n) < eon(loglogn)?;

otherwise, if o = 1+ 3r; + O(r?) as k — oo, for n large enough
we have

cin(loglogn)? < Dy (n) < ean(loglogn)P.

Therefore the corollary is a direct consequence of the above the-
orem. O



When there are infinitely many cutpoints, one ask naturally how
many cutpoints there are in [2,n|. The theorem below shows that
the number of cutpoints in [2,n| is approximately (10211%%'

Theorem 3
Consider the chain Z € {X,Y}. For n > 2, set

Sn = #{k € [2,n] : k is a cutpoint of Z}.
Suppose Condition (C) holds. Assume further g = 1 — 3ry +
O(r3) as k — oo if Z = X and o = 1+ 3r; + O(r}) as k — oo
if Z =Y respectively. If 0 < 8 < 1, then with proper constants
0 < c3 < ¢4 < 00, we have

ES, ES,

< lim inf <l <
e log n(loglogn)=# — lffiip logn(loglogn)=F8 — “

and for each € > 0,

Sn,
"
s (log n)1te(loglogn)—A

=0, as.. (1)




Criteria for the finiteness of the number of cutpoints

Theorem 2

Consider random walk Z € {X,Y}. Suppose that Condition (C)
holds, a+b = 1 and 9Ny > 0 such that g is increasing in k > Ny
when Z = X, and decreasing in £ > Ny when Z =Y.

& If

0

1
=<
Z Dy(n)logn -

n=2
then almost surely, Z has at most finitely many cutpoints.
{ 1If there exists some ¢ > 0 such that Dz(n) < dnlogn for n
large enough and

o0

1
222 Dz(n)logn o

n=

then almost surely, Z has infinitely many cutpoints.




Lemma
Consider (1,2) random walk Y. For 1 <m < k < n, we have

k t
14+ elA;---An_1e

QZ(TTL,’I’L): Z 61A5"'An7 Zs =m+1 €1 1 Qe’i—eg ’
1+ o— m+1e1As-~-An,1e§

s=m-+1
k n—1 t
n+1 . A A t S— 'm.+1 elAS T AnfleZ t
ko (m,n) = €1ds - An—1 | €2 — A A €1 >
s=m+1 1+Zs m+1 €144s © " An—1€7

k
ZS m+1 elAs te Anflel

Qr(m,n, + :
( ) 1+Zs m+1 elAS”'An_letl

Lemma
Consider (2,1) random walk X. For 1 <m < k < n, we have

| \

n—1
Zs k elAs"'Amﬂeﬁ
1+ Zs =m+1 ed--- Am+1e§

Pk(ma n, _)
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Theorem 1

Suppose that limg oo M = M, a+ 6 # 0, b # 0 and bd # af.
Then Jko > 0 such that for & > ko and 7,5 € {1,2}, we have

¢
€Myt - Miyne;

— — — 1/)(7’777 k)v
Eit1 " i

uniformly in k£ as n — oo; furthermore, if we assume further
0 > 1, then for k¥ > ky and ¢ = 1, j € {1,2}, with the above
¥(1, 4, k), we have
Zs 1 ez]\fk_,_s . ]\Lfk+,,Le§f
n+1 -
Z = £k+s ’ 5kin

uniformly in k£ as n — co.

— (2,5, k),




Lemma

Suppose that limyg oo M = M, a+ 6 # 0, b # 0, and bd # af.
Then there exist 0 < ¢5 < ¢g < 0o and Ny, Ny > 0 such that for
n > N1,k > Ny we have

ele cee Mk+nei

c; < < Cg.
o(My) - - o(Mg1n)

v

As a consequence, from Theorem 1 and the above lemma, we get
e1 M-+ Myinel ~ & - &L =< o(Mi) -+ o(Myi).
If one wants to show that
Sitr Gipn ~ 0(M) -+ o(Myin),

some stronger condition is required on the convergence manner
of My — M, see



[ Wang, H-M., Sun, H.-Y.: Asymptotics of product of non-
negative 2-by-2 matrices with applications to random walks

with asymptotically zero drifts. Linear Multilinear Algebra,
DOI: 10.1080,/03081087.2021.2022083 (2022)

@ Wang, H.-M., Yao, H.: Two-type linear fractional branching
processes in varying environments with asymptotically con-
stant mean matrices. J. Appl. Probab. 59(1), 224-255 (2022)



Idea of the proof of Theorem 2:

{ The escape prob. of the random walks can be written as
functions of product of matrices Ay - - - Agyn. So, using

t —1 —1
elAk t Ak-‘rnel ~ Cngrl T f]ngn

one can write the escape prob. as function of the product
of continued fractions. Consequently, one can estimate and
analyze accurately the escape prob.
& Using
Sei1 En =< 0(AR) -+ 0(Apyn),

one can transit the product of continued fractions to that
of spectral radii of matrices.

The proof is very technical, see

[§ Wang, H.-M., Tang L.-L.: Cutpoints of (1,2) and (2,1)
random walks on the lattice of positive half line, arXiv:
2206.09402 (2022)
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